Code No: R20A0506 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Regular Examinations, February 2022

Computer Organization

(CSE, C	SE-	ÁI&	ML	., ČS	SE-0	CS, C	CSE	-DS)	
Roll No										

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 Explain different functional units of a digital computer with neat sketch. Recall the [14M] usage of Signed number representations

OR

2 Recall the Multiplication algorithms used in Computer Arithmetic. Convert the [14M] following binary number into decimal & octal number: i) (00010.110)2 ii) (000.10110)2

SECTION-II

- 3 List and explain the steps involved in the execution of a complete instruction [14M] cycle. List the basic symbols used in register transfer Language OR
- 4 Classify different Types of Instructions used in Computer Organization with an [14M] example.

SECTION-III

5 Explain direct and immediate addressing Modes. Differentiate CISC and RISC [14M] processors

OR

6 Illustrate the micro-programmed control unit(MCU) with a neat diagram and how [14M] instructions will be processed in MCU?

SECTION-IV

7 Draw a neat block diagram of memory hierarchy in a computer system. Compare [14M] the parameters size, speed and cost per bit in the hierarchy.

OR

8 Explain the following mapping techniques used for cache mapping [14M] i) Associative mapping ii)Direct mapping iii) set-associative mapping cache

SECTION-V

9 Write a short notes on Peripheral devices .With a neat sketch explain the working [14M] principle of DMA

OR

10Discuss with neat diagrams, How Hazards improved in Pipelining.
********[14M]

Max. Marks: 70

Code No: R20A0506 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Regular Examinations, February 2022

Computer Organization

(CSE, C	SE-	ÁI&	ML	., ČS	SE-0	CS, C	CSE	-DS)	
Roll No										

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 Explain different functional units of a digital computer with neat sketch. Recall the [14M] usage of Signed number representations

OR

2 Recall the Multiplication algorithms used in Computer Arithmetic. Convert the [14M] following binary number into decimal & octal number: i) (00010.110)2 ii) (000.10110)2

SECTION-II

- 3 List and explain the steps involved in the execution of a complete instruction [14M] cycle. List the basic symbols used in register transfer Language OR
- 4 Classify different Types of Instructions used in Computer Organization with an [14M] example.

SECTION-III

5 Explain direct and immediate addressing Modes. Differentiate CISC and RISC [14M] processors

OR

6 Illustrate the micro-programmed control unit(MCU) with a neat diagram and how [14M] instructions will be processed in MCU?

SECTION-IV

7 Draw a neat block diagram of memory hierarchy in a computer system. Compare [14M] the parameters size, speed and cost per bit in the hierarchy.

OR

8 Explain the following mapping techniques used for cache mapping [14M] i) Associative mapping ii)Direct mapping iii) set-associative mapping cache

SECTION-V

9 Write a short notes on Peripheral devices .With a neat sketch explain the working [14M] principle of DMA

OR

10Discuss with neat diagrams, How Hazards improved in Pipelining.
********[14M]

Max. Marks: 70

Code No: R18A0505 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, July/August 2021 Computer Organization (CSE)

				(CSE)							
		Roll No										
Time:	3 hours									May	x. Marks:	70
1 11110.	J Hours		Ansv	ver Anv	v Five	Oues	tions			10102	x• 1 /1011 135•	/0
		Δ		stions (y 1100	eana	l mar	ks				
		1	in Que	500115 (***	cqua	1 IIIaI	кз.				
1	a). Explain	n the bus structu	re in d	etail w	ith nea	t diag	gram.					[7M]
	b). What a	are the functions	of AL	U.								[7M]
	,											[,]
2	Differenti	ate between fixe	ed poin	t and fl	loating	poin	t repr	resent	ation.			[14M]
3	Explain v	prious types of a	omput	or roai	tore w	ith hl	ock d	ligar	me			[1/M]
5		arrous types of c	omput	er regis	sters wi	iui bi	IOCK U	nagia	uns.			[1411]
4	Explain v	various instructi	on for	mats a	and wr	ite v	variou	ıs in	structio	on for	rmats for	[14M]
	$X = (A+B)^{2}$	*(C+D).										
_	a). Explai	n the different A	ddress	ing mo	des wi	th nu	meric	cal ex	ample	•		[7M]
5	1) D'		C									
	b). Discus	s CISC and RIS	C proc	essors.								[7M]
6	Illustrate t	he binary divisi	on pro	cess the	ough a	num	nerica	lexa	mple.			[14M]
0			on pro-									[]
7	Explain b	riefly about men	nory hi	erarch	у.							[14M]
0	*****	1 ())	•	г.		F A .	0		. ••			F4 /2 /2
8	With the h	help of a block d	iagram	n. Expla	aın DM	IA tra	anstei	r in d	etail.			[14M]
				***	*****	:*						

Code No: R18A0505 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Regular/Supplementary Examinations, February 2021 Computer Organization

			•	(CSE)							_	
		Roll No										
Time:	2 hours 30	min	<u> </u>						Μ	ax. I	Marks: 7	0
		All	Answer A Question	s carries	Quest equal	tions mar	·ks.					
				****	1							
1	a). Explain	n about data repre	sentation.									[7M]
	b). With a	neat sketch, expla	ain in deta	ail about	the fu	inctio	onal	units	s of c	comj	puters.	[7M]
2	What is b	ous? Draw the fig	ure to sh	now how	func	tiona	al un	nits a	are i	ntero	connected	[14M]
	using a bu	s and explain it.										
3	What is In	struction Cycle? 1	Briefly ex	plain wit	h stat	e dia	agran	n.				[14M]
4	What is th	ne difference betw	veen a dii	rect and	an ind	direc	t add	dress	ins	truct	tion? And	[14M]
	Explain at	oout various addre	ssing mo	des.								
5	Explain cl	early three types of	of CPU or	ganizatio	ons.							[14M]
6	Draw and	explain a flowcha	rt of mul	tiplicatio	n alg	orith	m.					[14M]
7	Explain th	e following Auxil	iary mem	ory devi	ces:							[14M]
	i. Ma	agnetic disks										
	ii. Ma	agnetic tape.										
8	Describe i	n detail about inp	ut-output-	processo	r (IO	P) or	rgani	zatic	on.			[14M]

Code No: R18A0505 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Regular Examinations, November 2019

Computer Organization

Roll No		

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1	a) Explain the basic operational concepts of a computer with the help of a suitable diagram	[8M]
	b) Explain how the performance of a computer is measured OR	[6M]
2	a) Use 8 bits to represent -9 in Signed magnitude, Signed 1's Complement, and Signed 2's Complement representations.	[6M]
	b) Define a parity bit. Draw the diagrams of 3-bit odd parity generator and checker circuits and explain	[8M]
	<u>SECTION-II</u>	
3	a) Draw and explain the construction of bus system using Three State buffers	[8M]
	b) List all the logic microoperations that are performed on the contents of registers OR	[6M]
4	a) List and explain the purpose of different registers for the basic computer	[6M]
	b) Explain Interrupt Cycle with the help of a flowchart	[8M]
	<u>SECTION-III</u>	
5	a) Compare the hard wired control unit and micro programmed control unit	[8M]
	b) Explain about typical Data Transfer Instructions	[6M]
	OR	
6	a) Explain the following addressing modes with an example	[6M]
	i) Register Indirect Addressing mode ii) Relative Addressing mode	
	b) Discuss about RISC and CISC Characteristics	[8M]
	SECTION-IV	
7	(a) Differentiate Static and Dynamic RAMs	[6M]
	(b) Explain Direct mapping technique used for cache mapping	[4M]
	(c) What is page fault? List various page replacement algorithms OR	[4M]
8	(a) Explain ROM and RAM with respect to their block diagrams	[7M]
	(b) Explain how read and write operations are performed in Associative memory	[7M]
	SECTION-V	
9	(a) Describe in detail about IOP organization	[8M]
	(b) Explain the method of DMA transfer.	[6M]
	OR	
10	Define cache memory? Explain various mapping techniques in cache memory.	[14M]

R18 Code No: R18A0505 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) **II B.Tech I Semester Supplementary Examinations, October 2020 Computer Organization** (CSE) **Roll No** Time: 2 hours Max. Marks: 70 Answer Any Four Questions All Questions carries equal marks. *** 1 a) Draw the diagram of a Single bus structure and explain. b) Explain about Multiprocessors and Multicomputer. 2 a) Draw the circuit diagram of 4-bit adder-subtractor circuit and explain its Operation.

- b) Explain division algorithms with suitable example.
- 3 a) Draw and explain 4 bit binary incrementer circuit. b) Explain the Hardware implementation for generating basic logic micro operations.
- 4 a) Explain Instruction Cycle with the help of a flowchart. b) List and explain all the register reference instructions.
- 5 a) Explain the operation of a Micro programmed control unit using a diagram.
 - b) Explain the following
 - i) Micro operation ii) Microinstruction iii) Micro program.
- 6 a) Draw the block diagram of an 8-bit ALU with a 4-bit status register and explain the purpose of each bit in the status register. b) Explain about typical Data Manipulation Instructions.
- 7 (a) Define Hit Ratio.
 - (b) Explain Write-through and Write-back methods of cache updation.
 - (c) Implement FIFO algorithm for the following page trace with the frame size 4. 0 1 3 6 2 4 5 2 5 0 3 1 2 5 4 1 0.
- 8 (a) What is meant by instruction pipeline? Explain four segment Instruction Pipeline. Give its timing diagram.
 - (b) Discuss briefly the protocols of universal serial bus.

Code No: R17A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) **II B.Tech I Semester Supplementary Examinations, October 2020 Computer Organization** (CSE & IT) **Roll No Time: 2 hours** Max. Marks: 70 Answer Any Four Questions All Questions carries equal marks. *** 1 a) Represent the following decimal values as signed 7 bit number using sign magnitude, signed 1's complement and signed 2's complement formats: i)+43 ii) -10 iii)51 iv)-27 b) Explain the different registers that are available in the processor of a digital computer and the connection between the processor and the memory. 2 a) What are the basic functional units present in the computer and explain each of them? b) Design a 4 bit Arithmetic Circuit which can perform addition, subtraction, increment and decrement operations. a) Draw the flow chart for interrupt cycle and write in brief about modified 3 fetch phase. b) Define the following: i. Microoperation ii. Microinstruction iii. Microprogram iv. Microcode a) What is instruction cycle? Explain various steps involved in the 4 instruction cycle. b) Write the circuit of Microprogram sequencer for control memory, explain in brief. 5 a) Explain the Stack Organization with example. b) With a neat diagram explain floating point addition/subtraction unit. a) Discuss the differences between RISC and CISC. 6 b) Write Booth multiplier recoding table. Perform booth multiplication on

- b) Write Booth multiplier recoding table. Perform booth multiplication o the following numbers -13(multiplicand), +11 (multiplier).
- 7 a) Draw the block diagram of a DMA controller and explain its functioning.
 - **b**) List the applications of Vector processing. Write in brief about vector operations.
 - **a**) List and explain different types of cache memory mapping techniques.
 - **b**) How address mapped using pages in virtual memory? Explain.

8

Code No: R17A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, July/August 2021

Computer Organization

				(CSE	& I	T)							
		Roll No												
-														-
Times	3 hours		Anor	uor A		Five	Ω u ac	tion				Max	x. Mark	xs: 70
		A11	Allsv Oue	estion	lly∎ s.cai	rries	Ques	l ma	s rks					
			Que	suon	s cai *:	**	cqua	1 1114	11.5.					
1	a) What is techniques	the purpose of ad	ldres	sing	mod	es? I	Expla	in va	ariou	is ad	dress	sing	mode	[7M]
	b) Design addition a	and explain 4-bit nd subtraction usi	adde ng fu	er-sub ill ad	otrac ders	tor a	nd 4	bit a	rithr	netic	e circ	uit to	o perfor	rm [7M]
2	a) Explain	the complete desi	ign c	of sim	ple	syste	m to	imp	leme	ent R	TL o	code	using	[7M]
	direct con b) De	nections, bus and the sign the bus syste	tri-st m fo	ate b or 4 re	uffe egist	rs. ers a	nd ex	xplai	n the	e woi	rking	g of i	.t?	[7M]
3	a) Explain b) What is instruction	the organizations address sequenci	of r ng?	nicro Expla	prog ain tl	gram he cc	med onditi	cont onal	rol u brar	init v nchir	vith an	neat d ma	sketch. apping o	[7M] of [7M]
4	a) Explain	micro sequencer	orga	nizat	ion	with	a nea	at ske	etch					[7M]
•	b) Discuss Compute binary mic	the following: or configuration fo cro program.	or mi	cro p	rogr	am, S	Symt	olic	mic	ro pr	ogra	m ar	ıd	[7M]
5	a) What a	re the different dat	ta tra	ansfei	r and	l data	a mai	nipul	atio	n ins	truct	ions	and	[7M]
	b) Design	4 bit Adder and S	ubtr	actor	circ	uit a	nd ex	plai	n its	oper	atior	ıs.		[7M]
6	a) Write thb) DifferenceCISC a	he Division algorit ntiate CISC and nd RISC micropro	thm RIS	and e C m sors	expla icroj	ain w proce	ith a essor	n exa s? E	ampl Expla	e. in t	he a	rchit	tecture	[7M] of [7M]
7	a) Explainb) What a	i instruction execure the different matrix	ition ajor l	in a hazar	4 sta ds ir	ige pi 1 pipe	ipeliı eline	ne w d exe	ith fl ecuti	owc on	hart.			[7M] [7M]
8	a) Draw a Compare	neat block diagrat the parameters siz	m of e, sp	men meed a	nory and c	hiera cost r	archy ber bi	in a t in t	t con	npute ierar	er sys chv.	stem		[7M]
	b) Explain	ROM and RAM	with	resp	ect t	o the	ir blo	ock d	liagr	ams	5.			[7M]

Code No: R17A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, Dec-21/Jan-22

Computer Organization

	(L	-SE	αI	I)			
Roll No							

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 Describe the functional blocks of a computer. Explain the RTL interpretation of [14M] instructions.

OR

2 Illustrate the various addressing modes of the CPU. Brief on fixed and floating [14M] point representation of relevant data.

SECTION-II

3	Describe the phases in Instruction cycle.	[14M]
	OR	
4	Illustrate with a neat architecture about design of control unit	[14M]
	SECTION-III	
5	Explain in detail about CISC and RISC machines	[14M]
	OR	
6	Demonstrate with example the working of shift & add and booths multiplier.	[14M]
	SECTION-IV	
7	Briefly describe the modes of data transfer in detail.	[14M]
	OR	
8	List various parallel processing challenges. Draw the block diagram of 5 stage	[14M]
	pipeline system.	
	SECTION-V	
9	Explain briefly about Associate-mapped and set-associate mapped cache memory	[14M]
	OR	
10	Describe about the segmented page mapping and page replacement in detail	[14M]

Code No: R17A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, February 2021 Computer Organization

					- ((CSE	& I	T)									
			Roll No]			
Tir	ne: 2	2 hours 30	min									M	lax.]		arks	s: 70	
				Answ	ver A	ny I	ive	Ques	tion	S							
			All	Que	stion	s cai **	ries **	equa	l ma	rks.							
1	a)) Explain va	arious number sys	tems	and	num	ber r	epre	senta	ation	s use	ed in	syst	en	n.		[7M]
	b)) Dividend	A=01110 Divisor	B=1	0001	. Ex	plain	flov	vcha	rt fo	r div	ide c	opera	atic	on.		[7M]
2	a)) Convert th	the $(256)_{10}$ into following	lowin	g co	des											[7M]
		i) Bir	nary Coded Decin	nal (B	CD))		ii	i) Ex	cess	3 co	odes					[7M]
		iii) G	ray code					i	v) Re	eflec	ted (Code	;				
	b) Explain a	ddition and subtra	actior	algo	orith	ms fo	or da	ta re	pres	ente	d in s	signe	ed			
	m	agnitude a	nd signed 2's com	plim	ent.					-			-				
3	a)	What are th	ne different phases	a basi	c cor	npute	er ins	tructi	on cy	ycle o	consi	sts? l	Expla	ain			[7M]
		instruction	cycle with flowcha	ırt.													[7M]
	b)	a) Explain	the design of contro	ol unit	. Ho	w to	deco	de the	e mic	ro op	oerati	on fi	elds?	? E	xpla	in	
		the process															
4	a)	Write the f	ormat of the micro	instru	ction	and	micro	o ope	ratio	ns fo	r the	cont	rol m	nen	nory	•	[7M]
	b)	With neat s	sketch explain the d	lesign	of co	ontro	l unit	of ba	asic c	comp	uter.						[7][1]
5	a)	What are the	ne different types of	f addr	essin	g mo	des a	ind ex	cplai	n wit	h exa	ample	es				[7M]
	b)	Write the n	nultiplication algor	ithm a	nd e	xplai	n wit	h an e	exam	ple							
6	a)	Draw the c	ircuit for 4-Bit BCl	D Add	ler ar	nd ex	plain	its o _j	perat	ions.							[7M]
	b)	Explain the	e STACK Organiza	tion													[/101]
7	a)	Differentia	ate parallel proces	ssing	and	pipel	ine p	proce	essin	g and	d exp	olain	ther	m.			[7M] [7M]
	b)	Explain ar	rithmetic pipeline	with	exan	nple											[/114]
8	a)) What is vi	rtual memory? W	ith th	e he	lp of	neat	sket	ch e	xpla	in th	e me	thod	10	f		[7M] [7M]
	vi	irtual to phy	ysical address trar	nslatio	on.												[/1 v1]
	b)) Explain th	e READ and WR	ITE o	opera	ation	s in A	Asso	ciati	ve M	lemo	ory					

Code No: R17A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, May 2019

Computer Organization

Roll No

Max. Marks: 70

R17

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

Time: 3 hours

***** SECTION.I

1(a)	Explain in brief the evolution of computer generations.							
1(u)								
(b)	Fourth generation computers							
	OR							
2(a)	Explain the various input output modes of data transfer.							
(b)	Define micro operation? Explain arithmetic micro operations. <u>SECTION-II</u>	[7 M]						
3(a)	Explain about the address sequencing in control memory. Draw the diagram to show selection of address that is to be loaded into the Control address register.							
(b)	Describe briefly about the register organization for floating point operations. OR	[7M]						
4 (a)	Differentiate between Hard-wired controlled and Microprogrammed controlled microinstructions.	[7M]						
(b)	Explain how to construct a common bus for four registers of n bits each using three state buffers.	[7M]						
	SECTION-III							
5 (a)	Explain Booth's multiplication algorithm with an example.	[7M]						
(b)	Explain the following addressing modes with examples:	[7M]						
	(i) Immediate mode (ii) Relative mode (iii) Auto increment OR							
6(a)	Discuss the Arithmetic operations on floating point numbers.	[7M]						
(b)	With the help of suitable diagram, explain a circuit that can be used to perform either addition or subtraction of binary numbers.	[7M]						
	SECTION-IV							
7	Write in detail about modes of I/O transfer.	[14M]						
_	OR							
8	Explain in detail about Asynchronous data transfer.	[14M]						
0()	SECTION-V							
9(a)	to implement this memory using 16K X 1 static memory chips.	[7]M]						
(b)	Construct an associative memory page table with number of words equal to the	[7M]						
	number of blocks in the main memory.							
	OR							
10(a)	Write a short note on virtual memory.	[7M]						
(b)	Write short notes on a)magnetic Disks B) Magnetic tapes, *******	[7M]						

Code No: R17A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, November 2019

Computer Organization

(CSE & IT)

Time: 3 hoursMax. Marks: 70Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONEQuestion from each SECTION and each Question carries 14 marks.***

SECTION-I

1	a)	What are the different performance measures used to represent a computer system performance?	[7M]
	b)	Discuss about Error Detection codes. OR	[7M]
2	a) b)	Explain Arithmetic, logic and shift micro-operations with examples. Describe single bus organization of a computer system.	[10M] [4M]
3	a)	Explain role of different computer registers with respect to instruction Fetch cycle and execution. Give example.	[7M]
	b)	With the diagram explain the basic organization of micro programmed control unit.	[7M]
		OR	
4	a)	List the basic computer registers with their bit size, register name and functionality.	[7M]
	b)	Write the differences between Hardwired Control and micro programmed control.	[7M]
		SECTION-III	
5	a)	Explain basic instruction types. Give an example for each type.	[7M]
	b)	Explain addition and subtraction algorithm in computer arithmetic OR	[7M]
6	a)	What is Addressing mode? Explain following addressing modes:	[7M]
		i) Direct addressing mode	
		ii) Indexed addressing mode	
		iii) Auto increment addressing mode	
		iv) Auto decrement addressing mode	
		v) Indirect addressing mode	
	b)	Explain stack organization with block diagram.	[7M]
		SECTION-IV	
7	a)	Describe the different modes of transfer.	[7M]
	b)	What are the different stages of Instruction pipeline? Explain.	[7M]
_		OR	
8	a)	Differentiate the Asynchronous and synchronous data transfers.	[7M]
	b)	What are the conflicts raised in pipelining? Suggest solutions to overcome these conflicts.	[7M]

9

10

SECTION-V

- a) What is cache memory? State different mapping techniques in detail [10M]
 - b) What is page fault? What does page fault signifies when occurred. Explain [4M] page replacement algorithms.

OR

- **a**) Explain the memory hierarchy with a neat diagram.
 - b) Define hit rate and miss penalty. Calculate the total access time if miss rate [7M] is 0.12 miss penalty is 0.015ms and cache access time is 10microseconds.

[7M]

R15

Code No: R15A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech II Semester Supplementary Examinations, December 2019

Computer Organization

		(\mathbf{C})	SE)						
Roll No									
						Μ	ax. I	Marks	s: 75

Time: 3 hours

Note: This question paper contains two parts A and B
 Part A is compulsory which carriers 25 marks and Answer all questions.
 Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

1). a	Define a Parity bit.	[2M]
b	Define a microoperation. Give examples	[3 M]
с	What are the different phases in an instruction cycle	[2M]
d	What are the advantages and disadvantages of Hardwired Control Unit	[3 M]
e	Define cache memory.	[2M]
f	Define an interrupt. What are the different types of interrupts	[3 M]
g	Define a Peripheral. Give Examples	[2M]
h	What are the different conflicts in instruction pipelining	[3 M]
i	Define locality of reference	[2M]
j	Draw the memory hierarchy diagram	[3 M]
	PART-B (50 MARKS)	
	SECTION-I	
2	(a) What are the different functional units of a computer and explain	[6M]
	(b) Differentiate between multi processors and multi computers.	[4M]
	OR	
3	(a) List at least 8 logic microoperations	[4M]
	(b) Draw the circuit diagram of 4-bit adder-subtractor circuit and explain its	[6M]
	operation	
	<u>SECTION-II</u>	
4	(a) List the various types of registers used in a basic computer and explain	[4M]
	(b) Explain the different instruction formats of a basic computer	[6M]
-	OR	F (3) (7)
5	(a) What are the address sequencing capabilities in a control memory	[4M]
	(b) Draw the Microinstruction format and explain each field	[6M]
(SECTION-III	F4 03 4 3
6	Define effective address? And Explain various addressing modes in detail	[10M]
	with numerical examples.	
7		
/	(a) write the three address instruction formats to evaluate $X=(A+B)^*(C+D)$	[4M]
	(b) Explain the Stack organization in a system	[6M]

SECTION-IV

8	(a) What is the need of I/O interface module. Differentiate isolated IO and	[5 M]
	memory mapped I/O?	
	(b) Explain the concept of asynchronous data transfer.	[5M]
	OR	
9	What is meant by instruction pipeline? Explain four segment Instruction Pipeline.	[10M]
	Give its timing diagram	
	SECTION-V	
10	(a) Write short note on Magnetic Disks	[3 M]
	(b) What is virtual memory? With the help of neat sketch explain the method	[7M]
	of virtual to physical address translation.	
	OR	
11	(a) Explain how read and write operations are performed in Associative	[5M]
	memory	
	(b) Explain Direct mapping technique used for cache mapping	[5M]

R15

Code No: R15A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech II Semester Supplementary Examinations, February 2021 Computer Organization

Time:

1

2

3

4

		npun		5 million								
	(CSE)											
Roll N	No											
2 hours 30 min								Μ	[ax.]	Mark	s: 75	
	Ansv	wer A	ny Fi	ve Que	stions	5						
	All Que	estions	s carrı ***	es equa	ıl ma	rks.						
Evaluate the following	g arithmetic	stater	nent u	ising ze	ro, or	ne, tw	vo ar	nd thi	ree a	ddress	5	[15M]
instructions. Use the c	onventiona	l symł	ools ai	nd instr	uction	ıs.						
X = (A+B) * (C+D).												
Draw a flowchart for a	adding and	subtra	cting	two fixe	ed po	int bi	inary	num	nbers	where	e	[15M]
Negative numbers are	signed 1's	compl	emen	t presen	tatio	1.						
With a neat Block Di	agram expl	lain ał	oout I	nput –	Outp	ut an	d Int	terru	pts			[15M]
Differentiate between	n hardwired	l conti	ol an	d micro	prog	gram	med	cont	trol.			[15M]
Is it possible to have	ve a hardw	vired	contro	ol asso	ciate	d wi	ith a	cor	ntrol	mem	ory,	
Justify your answer												
a) Illustrate the different	ent types of	f addr	essing	g mode	s with	1 exa	mpl	es.				[7M]

- a) Illustrate the different types of addressing modes with examples. [7M]
 b) Represent the following conditional control statement by two register transfer statements with control functions: If(P=1) then(R1←R2) else if (Q=1) then (R1←R3).
- 6 Show the step-by-step multiplication process using Booth algorithm [15M] when the following binary numbers are multiplied. (+33) × (-12).
- 7 Reproduce instruction pipeline with clear examples. [15M]
- 8 Compare interrupt driven data transfer scheme and DMA. Using block diagram [15M] explain interrupt driven transfer scheme.

Code No: R15A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech II Semester Supplementary Examinations, June 2022 Computer Organization

				(CS	SE)							
		Roll No										
Time:	3 hours	All	Answer Questic	Any F	ive Qu ries eq	estion ual ma	s arks	Max.	. Ma	rks:	75	
1	List and ex	xplain the functior	nal units	s of a c	omput	er.						[15M]
2	List the reeevent	egisters for the ba	sic con	nputer	and gi	ve the	eir fu	nctio	onali	ty in	program	[15M]
3	Write a de	tailed note on inst	ruction	cycle.								[15M]
4	Describe t over hardw	he micro program vired control.	med co	ontrol o	organiz	ation	and o	comp	are	its ad	lvantages	[15M]
5	Explain C	omputer Arithmet	ic in det	tail.								[15M]
6	Compare a	and Contrast CISC	and Rl	ISC.								[15M]
7	Analyze th	ne parallel process	ing arcł	nitectu	re and	its use	s.					[15M]
8	Explain ca	che memory and	cache co	oheren	ce?							[15M]

Page 1 of 2

[5M]

Code No: R15A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester supplementary Examinations, May 2019

Computer Organization

		(I	T)			
Roll No						

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

1). a	What is 2's compliment ? give examples.	[2M]				
b	What is Register Transfer? give example.	[3M]				
с	What is Instruction cycle.	[2M]				
d	Explain the different timing diagrams associated with buses.	[3 M]				
e	Write the advantages of RISC over CISC.	[2M]				
f	What is Addressing mode? List any 4 addressing modes.	[3 M]				
g	g What is meant by pipelining and the advantage of pipelining. [2					
h	h What are the functions of typical I/O interface. [3					
i	What is the function of TLB. [2					
j	Why does DMA have priority over the CPU when both requests a memory [3]					
	transfer.					
	PART-B (50 MARKS)					
	SECTION-I					
2	a) What are the design goals of Computer Architecture.	[5M]				
	b) Explain about Floating-point representation.	[5M]				
	OR					
3	Distinguish between error detection and error correction. Explain with an example	[10M]				
	how Hamming code is used for error detection.					
	SECTION-II					
4	a) Show how a 9-bit micro operation field instruction can be divided into	[5M]				
	subfield to specify 46 micro-operation. How many micro-operations can be					
	specified in one micro instruction.					

b) What is control field encoding ? Explain the role and advantages of micro **[5M]** programming.

OR

5 a)	Give the micro	operations needed	to execute the instruction LDA.	[5M]
------	----------------	-------------------	---------------------------------	------

b) Write about Hardwired control

SECTION-III

6 Explain in detail the principle of carry-look-ahead adder, Show how 16-bit CLA's **[10M]** can be constructed from 4-bit adders.

R15

Max. Marks: 75

0	R
\mathbf{U}	T.

7	a) b)	Distinguish between circular shift and arithmetic shift with example Explain the three basic types of Data manipulation instructions	[5M]
	0)	Explain the three basic types of Data manpulation instructions	
SECTION-IV			
8	a) Exp	lain the daisy chain mechanism of data transfer.	[5M]
	b) Exp	plain briefly the purpose of an IO processor in data transfer between a	[5M]
	periph	eral device and CPU	
OR			
9	a)	Explain pipeline chaining and vector loops in a vector processor.	[5M]
	b)	Describe the implementation of multiply instruction use narrative and	[5M]
		flowchart.	
SECTION-V			
10	a)	Describe the concept of cache memory and explain the methods of writing	[5M]
		into cache.	
	b)	Explain the Memory Hierarchy.	[5M]
OR			
11	A Digital computer has a memory unit of 64 K x 16 and a cache memory of 1 K		[10M]
	words.	The cache uses direct mapping with a block size of four words. How many	
	bits ar	e there in the tag, index, block an word fields of the address format? How	

many blocks can the cache accommodate ?